
Journal of Statistical Physics, Vol. 62, Nos. 1/2, 1991 

Pair-Correlated Patterns in Hopfield Model 
of Neural Networks 

Francisco A. Tamari t  1' 2 and Evaldo M. F. Curado ~ 

Received June 7, 1990; final September 5, 1990 

We study the retrieval properties of the Hopfield model of neural networks 
when the memorized patterns are statistically correlated in pairs. There is a 
finite correlation ~c between the memories of each pair, but memories of different 
pairs are uncorrelated. The analysis is restricted to the case of an arbitrary but 
finite number of memories in the thermodynamic limit. We find that there are 
two retrieval regimes: for 0 < T < ( 1 - • )  the system recognizes the stored 
patterns and for ( 1 - - K ) < T < ( I + ~ c )  the system is able to recognize pairs, 
but it is not able to distinguish between its two patterns. 

KEY W O R D S :  Hopfield model; neural networks; correlated patterns. 

In the recent years great effort has been devoted to the study of spin-glass 
models for associative memory and in particular to the Hopfield model. (~ 3) 
As first proposed, this model is seriously limited by the fact that the 
memorized configurations have to be uncorrelated in order to provide 
associative memory, and a fair amount of analytical and numerical work 
has been done to overcome this restriction. ~4 11) Most of this work focuses 
on the learning rule, attempting to find a suitable modification able to 
achieve the desired properties, or are concerned only with the storage 
capacity in the T ~  0 limit. 

Although it is well known that a finite overlap among the stored con- 
figurations tends to destabilize them, little has been said about how the 
correlation modifies the equilibrium properties of the system before they 
are completely destabilized. In order to answer this question, we study in 
this paper the thermodynamics of the Hopfield model as originally 
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proposed, but with the stored patterns statistically correlated. The correla- 
tion is introduced in a simple manner, namely, the patterns are grouped in 
pairs, in such a way that the two patterns of each pair have a finite overlap, 
while two patterns of different pairs have zero overlap and are statistically 
uncorrelated. Besides the simplifications introduced in the calculations by 
considering this particular case instead of a more general one, only in this 
case does the system provide associative memory for any value of the 
correlation ~c (0 ~< ~ ~ 1). We restrict ourselves in this paper to the case of 
an arbitrary but finite number of stored configurations. 

The Hopfield model for associative memory consists of a system of N 
neurons, each one modeled by an Ising spin variable which can assume the 
values + 1 and - 1 ,  representing the active and passive states of the 
neuron, respectively. Each neuron is fully connected with the rest of the 
system through the symmetric synaptic matrix Jij and the dynamics is a 
Monte Carlo process governed by the Hamiltonian 

1 J I-I=-~Z ~sis, (1) 
t , J  

The synaptic matrix is constructed following Hebb's rule 
1 r 2 

J~=~ ~ ~ ~'++~j:"', i#j (2) 
u - - 1  l = 1  

where the ~'s are quenched, random variables which take the values + 1 
according to the following distribution: 

N 

P({r  lq f l  p(r r (3) 
i = 1  /2=1 

with 
1+~: p(~, l ,  ~,2) = _ _ ~  3(~,1 + 1) 6(~'2 + 1) 

+ - Z -  6(~,1 + 1) 6(~? 2 - 1) 

+ - - Z -  6 (~ , '  - 1) 6 ( ~  ,2 + 1) 

1 + ~  
+ --Z-- 6(~71 - 1) 6(~? ~ -  1) (4) 

For fixed/z and l, {~,1} with i=  1,..., N is a particular configuration of the 
system. They form a set of 2r configurations which have been learnt and 
according to Eq. (3) they are divided into r pairs denoted by the Greek 
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superscript p = l,..., r and each pattern of the pair is denoted by the Latin 
superscript l = 1, 2. The distribution (4) implies that 

~tl v m  p v  l m  ((~, ~; ) )=6 (6 (1-~c)+,0 (5) 

((~ 7')) = 0  (6) 

where (( ... )) denotes the average with distribution (3). Equation (5) 
means that two patterns of different pairs are statistically independent, 
while the two patterns of a pair are statistically correlated. Note that unlike 
Amit et aI. did in ref. 4, here the overlap is introduced through a statisti- 
cally dependent distribution, without removing the condition (6). This 
model provides one of the simplest hierarchically correlated trees of 
patterns, consisting of r categories, each one with two memories. (5) 

In order to see that in this case the effect of correlation between 
patterns does not destabilize them, we calculate the local field acting on the 
site i when the system is in the state {S;} = {~;,1}, in the limit N ~  oo and 
finite r, 

N 
h~ 1 = l i m  ~ j~ j~ ;1  = ~ 1  + K ~ 2  (7 )  

N~oo  . 
J 

The first term in Eq. (7) represents a signal which tends to align S; with 
the local field, while the second represents a noise. Nevertheless, the last 
one can never destabilize the signal, because its modulus is less than the 
modulus of the signal for any value of the correlation, that is, the 2r pat- 
terns will be stable for any value of ~c (0 ~< K ~< 1). Although the system still 
provides associative memory, its performance (size of the basins of attrac- 
tion, number and properties of the spurious states, storage capacity, etc.) 
will be modified when the correlation is introduced and we devote the rest 
of this work to analyzing how some of these properties change. Following 
the ideas of Amit et al., (2) we introduce a stochastic noise represented by 
a finite temperature T that measures the level of synaptic noise and study 
the statistical mechanics of the Hamiltonian (1). We calculate the partition 
function 

7/= Trs exp( - f i l l )  (8) 

with H given by Eq. (1), J,7 by Eq. (2), and the ~'s chosen according to 
the distributions (3) and (4). For a given realization of the ~'s, 7/ can be 
rewritten as 

drn ~,; 

t -~[Nflm 2 N } 
• exp ~ - - X - - +  Z ln[2 cosh(flm. ~;)] (9) 

i = l  
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where we have adopted the following notation: 

m = ( m l l ~  m 12, m 2 1 , . . . , / ~ r l  mr2) 
~i = ( ~ 1 ,  ~'12 21 r l  r2 

; ,  , ~ i  ..... ~i , ~ i  ) 

m'~i= Z 2 g,m~V' v, 
v = l  l = 1  

In the limit N ~  oe and finite r the order parameter m can be determined 
by the saddle point equation. Using the fact that both ln(~) and m are self- 
averaging, we obtain 

1 2 1 
f(fi) = ~ m - ~ ((ln [2 cosh(/~m �9 {)] )) (10a) 

m = <<~ tanh(fim. ~))> (lOb) 

In order to know whether a solution of Eq. (10) is stable or not, we 
also study the eigenvalues of the matrix A given by 

A ~'~m- 02f(fl) -6~'~6'm-fi(<<~'~w'>>-q ~'~m) (11) 
~m~l ~mvm 

with 

q~,~m = ((~,(vm tanh2(flm . {) )) (12) 

Obviously, this model does not admit Mattis-like solutions, but new 
kinds of solutions appear which allow recognition. The system presents 
now three different regimes instead of two, as occurs in the • = 0 case 
(Fig. 1): 

(a) The paramagnetie regime: above TI = (1 + ~c) the only solution 
is the state m = 0 with 

f(fl) = - T ln  2 

which we will call paramagnetic in analogy with the magnetic case. The 
matrix A has two eigenvalues 

21 = 1 - / ~ ( 1 - ~ )  

22 = 1 - - / ~ (  1 -}- K) 

each one with degeneracy r. This solution is then stable for T >  T~, at 
which 2 2 becomes negative. In this regime the system is not able to 
recognize the stored patterns. 



Hopfield Model  of Neural Networks 477 

Q;, 

0 

m 11 

m |2 

L 

1-) ( .  1 
Temperalure 

t l  m12 
m = 

\ 
\ 

\ 
\ 

\'x 

\ 
\ 

i\ 

1 + •  

Fig. 1. The nonzero overlaps m "~ and m "2 vs. temperature for the retrieval solutions. The 
dashed lines correspond to the pair retrieval regime (m"l = m v2) and the continuous lines to 
the pattern retrieval regime ( r e ' l >  m"2).  

(b)  
fo rm 

The  pair  retrieval  regime: at  T1, 2r  so lu t ions  emerge  wi th  the 

m = (0, 0,..., m vl, m v2, 0 ..... 0) (13a)  

m ~1 = m  v2 (13b)  

A v e r a g i n g  Eq. (10b) ,  one  o b t a i n s  t ha t  

m = m v1 = m v2 = 1 2 tc t a n h ( f l 2 m )  (14) 

The  m a t r i x  A has,  in this  case  four  e igenva lues :  

21 = 1 - fl(1 + ~c)rl - tanhZ(2flm)]  = 1 -  d ~  ' . . . .  . (15a) 

& = 1 - /~(1 - ~c) (15b) 

23 = 1 --fl(1 +~c) 1 - - - ~ t a n h 2 ( 2 / ~ r n )  (15c) 

; ~ 4 = 1 - / ~ ( 1 - ' ~ ) I 1  1 + ~  ] - - -~ - -  tanh2(2flm) (150) 



478 Tamarit and Curado 

where m* is a stable solution of Eq. (14). As is known, for T<  TI, Eq. (14) 
has two nonzero stable solutions, and at these values the derivative is less 
than one, following that 2~ > 0  for T <  T~. From Eq. (15b) it follows that 
22>0  only for T>  T2 = 1 -  ~c. We calculated numerically 23 and 24 and 
verified that they are positive for T2 < T <  Tx, showing that these solutions 
are stable in this range of temperatures. In this regime the system is then 
able to recognize pairs, but it is not able to distinguish between its two 
patterns. 

(c) The pattern retrieval regime: at T2, where the pair retrieval 
solutions become unstable, a new kind of solution appears allowing pattern 
recognition and with the form 

m = (0, 0,..., m ul, m v2, 0,..., O) (16a) 

m vl  ~ k m  ~2 (16b) 

After averaging Eq. (10b), we obtain 

m v l  _~. 

2 

l + t c  
m v2 

2 

l - - K  
tanh[fl(m~l + m~2)] + T tanh[fl(m~l - my2)] 

tanh[fl(m ~1 + mY2)] - ~ tanh [fl( m~l - mV2)] 

(lVa) 

(17b) 

Using the fact that t anh(x)~s ign(x)  as x ~ o v ,  for T ~ 0 ,  Eqs. (17a), 
(17b), and (10a) tend to 

m vl  = 1 

m v2 = K 

f (T=O)= - �89 +~c 2) 

The matrix A now has four eigenvalues: 

2 , =  1- f l (1  + ~c){1-tanh2[fi(m ~1 +my2)]} 

22= 1 - f l ( 1 - K ) { 1 - t a n h 2 [ f l ( m  v' +m"2)]} 

23 -- 1 - f l (1  + to)(1 + q1111) 

24 = 1 - fl(1 - ~c)(1 - q,111) 

Let us define u =  (m vl + m  v2) and v=  (m ~1 -m~2). Then 

u = (1 + K) tanh(flu) 

v = (1 - ~c) tanh(fiv) 

(18a) 

(18b) 

(18c) 

(19a) 

(19b) 

(19c) 

(19d) 

(20a) 

(20b) 
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We can rewrite Eqs. (19a) and (19b) as 

= - ~ ,  (21a) 21 1 du u=u* 

dr, (21b) 22= 1-Tv,,~=~. 

where u* and v* are solutions of Eqs. (20a) and (20b), respectively. Then 
we obtain 21 > 0 for T <  TI and 22 > 0 for T <  T2. We analyzed 2 3 and 2 4 

numerically and found that they are positive for T <  T 2, concluding that 
these solutions are stable in the whole range between T = 0 and 7"2 = 1 - ~c. 

There is another set of solutions with the general form 

k p a i r s  n - -  k p a i r s  r -  n p a i r s  

m = m , , k ( 1 ,  1 ..... 1, - 1  .....  0 , . . . ,  O) 

n r r - - k  There are 2 (k)(n-k) equivalent solutions for fixed k, and they appear at 

with 

3n2T"k T 
f,,~(~) _ ~ ( ~- r) ~ 

where 

= <<(zk + 2n_,)4 >> 
k 

z~ = y~ (~v~ + r 
v = l  

2n_~= ~ (r 
v = k + l  

Note that T2 ~< T,,, ~< T1. All the solutions with n = k appear at T1 = 1 + ~:, 
and in particular, the pair retrieval solutions of the previous subsection 
correspond to the case n = k = 1, which also have the lowest energy among 
all of them. That  means the system undergoes a second-order phase 
transition from the paramagnetic regime to the pair retrieval regime at T1. 
These solutions correspond, in the limit ~c--. 0, to the symmetric solutions 
with an even number of nonzero components in ref. 3. It can be shown that 
these solutions are unstable near and at T = 0 ,  and that those solutions 
with n = k are unstable in the whole interval. 

We found other solutions, but their energies at T =  0 are always higher 

822/62/1-2-31 
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then the energy of the retrieval solutions. Among these, the solutions with 
the general form 

m = ( m l ,  ml, ml, m2, 0 ..... O) 

have the lowest energy at T =  O, where 

m x = ~  1 +  5 , m 2 = ~ ( 1 - - ~ )  

These solutions correspond, in the limit ~-~ 0, to the symmetric solutions 
with three nonzero components given in ref. 2. All this means that, 
although we could not prove that the ground state is associated with the 
solutions (17), we did not find any solution with free energy less than (18c). 
Nevertheless, we know that they are the ground states at least near ~c = 0 
and ~ = 1, the two limits in which we recover the statements of ref. 2. 

Although we have focused our analysis on a simple case, the results 
show how the performance of the model is modified when correlation 
between patterns is introduced. The major feature of the model is the 
existence of three different regimes: a low-temperature retrieval one 
in which the system recognizes the stored patterns, an intermediate- 
temperature pair retrieval regime (that disappears when the correlation 
~c~0)  in which the system recognizes the pairs but is not able to 
distinguish between the patterns, and the paramagnetic regime at 
high temperature, in which the system does not provide associative 
memory. Another interesting feature of the model is the splitting of the 
temperatures at which the symmetric solutions appear. 
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